CURE IS PRACTICAL BUT ONLY AVAILABLE TO A FEW
Cure Is Practical

Table 1. Hematopoietic cell transplantation

<table>
<thead>
<tr>
<th>Location</th>
<th>Belgium</th>
<th>Pesario</th>
<th>France</th>
<th>Multicenter</th>
<th>Other US/Europe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimen</td>
<td>BU,CY (30), BU,CY,TLI (6), BU,CY,ATG (14)</td>
<td>BU,CY (17), BU,CY,TLI (1), BU,CY,ATG (21)</td>
<td>BU,CY (12), BU,CY,TLI (1), BU,CY,ATG (21)</td>
<td>BU,CY,ATG</td>
<td>BU,CY,ATG (13), CY/TBI (3)</td>
<td></td>
</tr>
<tr>
<td>Number of patients</td>
<td>36 (14)</td>
<td>19 (19)</td>
<td>34 (59)</td>
<td>59 (16)</td>
<td>16 (1)</td>
<td>175 (1)</td>
</tr>
<tr>
<td>Median age (range)</td>
<td>8.6 (1.7–23)</td>
<td>7 (4–38)</td>
<td>8.6 (2.3–17.2)</td>
<td>9.9 (3.3–15.9)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>0 (0)</td>
<td>3 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Stroke/CNS</td>
<td>6 (0)</td>
<td>1 (0)</td>
<td>16 (1)</td>
<td>31 (2)</td>
<td>2 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>ACS</td>
<td>20 (0)</td>
<td>15 (1)</td>
<td>20 (0)</td>
<td>18 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>VOC</td>
<td>36 (0)</td>
<td>15 (0)</td>
<td>8 (0)</td>
<td>11 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Other/unknown</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MM donor</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11 (9)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>34 (94)</td>
<td>14 (100)</td>
<td>14 (74)</td>
<td>31 (91)</td>
<td>55 (94)</td>
<td>13 (81)</td>
</tr>
<tr>
<td>Deaths</td>
<td>2 (0)</td>
<td>0 (0)</td>
<td>5 (0)</td>
<td>3 (0)</td>
<td>4 (0)</td>
<td>3 (0)</td>
</tr>
<tr>
<td>Graft rejection/ recurrent SCD (%)</td>
<td>4 (0)</td>
<td>1 (0)</td>
<td>4 (0)</td>
<td>5 (0)</td>
<td>1 (0)</td>
<td>16 (9)</td>
</tr>
<tr>
<td>Stable mixed chimerism</td>
<td>6 (0)</td>
<td>–</td>
<td>5 (0)</td>
<td>10 (0)</td>
<td>1 (0)</td>
<td>11 (0)</td>
</tr>
<tr>
<td>Disease-free survival (%)</td>
<td>30 (83)</td>
<td>13 (93)</td>
<td>13 (68)</td>
<td>27 (79)**</td>
<td>50 (85)</td>
<td>12 (80)**</td>
</tr>
<tr>
<td>aGVHD</td>
<td>15**</td>
<td>5 (0)</td>
<td>4 (0)</td>
<td>6 (grade II)</td>
<td>11 (grade I–III)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>cGVHD</td>
<td>8 (2)</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td>5 (1)</td>
<td>1 (12%)</td>
</tr>
<tr>
<td>Seizures</td>
<td>18 (1)</td>
<td>1 (0)</td>
<td>7/26 (0)</td>
<td>13 (0)</td>
<td>1 (0)</td>
<td>25%</td>
</tr>
</tbody>
</table>
Non-Myeloablative BMT in Adults

Table 1. Characteristics of 10 Patients Undergoing Nonmyeloablative Hematopoietic Stem-Cell Transplantation (HSCT).

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age at HSCT (yr)</th>
<th>Sex</th>
<th>Type of Sickle Hemoglobin</th>
<th>Coexisting Conditions and Indications for HSCT</th>
<th>Medical Management before HSCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>F</td>
<td>SS</td>
<td>Recurrent TIA and stroke, elevated TRV</td>
<td>Simple and exchange red-cell transfusions</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>M</td>
<td>SS</td>
<td>Frequent VOC, priapism, proteinuria (1.7 g/24 hr)</td>
<td>Hydroxyurea, simple and exchange red-cell transfusions</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>F</td>
<td>SS</td>
<td>TIA, frequent VOC, acute chest syndrome</td>
<td>Hydroxyurea, exchange red-cell transfusions</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>M</td>
<td>SS</td>
<td>Frequent VOC, acute chest syndrome, narrow CNS arteries on MRA</td>
<td>Hydroxyurea, exchange red-cell transfusions</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>M</td>
<td>SS</td>
<td>Frequent VOC, acute chest syndrome</td>
<td>Hydroxyurea</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>M</td>
<td>SC</td>
<td>Frequent VOC, priapism, narrow CNS arteries on MRA, lacunar infarcts</td>
<td>Hydroxyurea</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>F</td>
<td>SS</td>
<td>Frequent VOC, elevated TRV</td>
<td>Hydroxyurea</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>F</td>
<td>SS</td>
<td>Frequent VOC, elevated TRV</td>
<td>Hydroxyurea and simple red-cell transfusions</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>F</td>
<td>SS</td>
<td>Sickle-cell–related FSGS (baseline creatinine, 2.5–2.7 mg/dl [221–239 μmol/liter]), elevated TRV, acute chest syndrome, frequent VOC, red-cell alloimmunization, hepatitis C</td>
<td>Hydroxyurea, simple and exchange red-cell transfusions, darbepoetin</td>
</tr>
<tr>
<td>10</td>
<td>26</td>
<td>M</td>
<td>SS</td>
<td>Sickle-cell–related nephrotic syndrome, elevated TRV, acute chest syndrome</td>
<td>Hydroxyurea, simple red-cell transfusions, prednisone</td>
</tr>
</tbody>
</table>

Non-Myeloablative BMT in Adults

Patient No.	Composition of Infused Graft	Months after Transplantation	Duration of ANC <0.50×10^9/liter	Duration of ALC <0.75×10^9/liter	Donor CD3+ Cells	Donor CD4+15+ Cells	Hemoglobin	Hemoglobin S Donor	Hemoglobin S Recipient	
-------------	-------------------------------	-----------------------------	----------------------------------	----------------------------------	------------------	---------------------	------------	===================	=======================	
1	5.72 ×10^6†	3.21 ×10^6†	54	21	7	48	12.0	0	0	
2‡	7.56 ×10^6†	2.27 ×10^6†	36	18	2.5	63	11.1	40.5	51.6	
3	10.0 ×10^6†	3.42 ×10^6†	42	12	6	61	14.8	35.2	35.2	
4‡	8.3 ×10^6†	5.35 ×10^6†	33	29	6	0	0	11.4	45.9§	
5	5.51 ×10^6†	3.71 ×10^6†	30	10	4	72	14.3	0	0	
6	23.8 ×10^6†	2.81 ×10^6†	32	10	6	35	14.7	38.2	37.0	
7	18.8 ×10^6†	3.32 ×10^6†	29	19	8	62	12.2	36.6	35.4	
8	20.1 ×10^6†	3.04 ×10^6†	30	11	1.5	63	100	12.1	0	
9	16.6 ×10^6†	3.7 ×10^6†	16	15	3.5	23	97	11.7¶	0	
10	15.1 ×10^6†	3.64 ×10^6†	15	18	4	75	100	10.5¶	35	34.6

* Results are from the most recent follow-up assessment. ALC denotes absolute lymphocyte count, and ANC absolute neutrophil count.
† Values are per kilogram of the recipient's body weight.
‡ The results shown are from a second transplantation.
§ The patient had received an exchange transfusion within the previous 2 months.
¶ The patient was receiving supportive treatment with erythropoietin owing to renal insufficiency.
APPROACH TO TREATMENT

- Complications precipitated by extra erythrocytic factors, not directly related to hemoglobin
 - Increased cell/cell and endothelial adherence
 - Activation of thrombosis
 - Decrease vasoconstriction
SICKLE CELLS ARE STICKY
VASO – OCCLUSION
Wick et al

"Vicious Cycle" (Ham & Castle Trans Am Assoc Phys 55:1940;127)

Kinetic Hypothesis (Eaton, et al., Blood 47:1976;621)
MULTIPLE SPECIFIC PATHWAYS

Wick et al and Others

Sickle Erythrocyte (Reticulocyte)

α₄β₁ (VLA-4)
CD36
α₅β₁ (VLA-5)
α₅β₃ (VnR)
α₉β₃ (VnR)
α₁₁β₃ (GPIIb/IIIa)
GPIb (?)
GPIb (?)
TSP
Fibrinogen
Fibrinogen
VWF
CD36 (MEC)
ICAM-1
Endothelial Cell
RGD Peptides Inhibit Plasma Dependent SRBC Endothelial Adherence

Adherent RBC/mm³

6Z (0.1 uM) 8X (1.0 uM)

SFM 30% Autologous Plasma Peptide on MEC Peptide on RBC
SICKLE CELL DISEASE:
A Hypercoagulable State?

- Increased platelet count
- Decreased platelet survival
- Drop in count during crisis
- Increased F VIII & vWF
FLOW CYTOMETRIC ANALYSIS OF PLATELET ACTIVATION

- FIBRINOGEN
- Receptor Induced Binding Site
- Fibrinogen Binding Site
- Ligand Induced Binding Site
- PLATELET
- GPIIb/IIIa
- Ca++
- Activation
- anti-RIBS1
- anti-LIBS
- FITC
- PAC1
- FITC
PLATELET ACTIVATION

Flow Cytometric analysis of Surface Markers

Log Immunofluorescence

NC
BL
Post

PAC1
anti-RIBS
GA6
Annexin V
anti-Factor V
THROMBOSIS and FIBRINOLYSIS

PROTHROMBIN

PROTHROMBIN F1.2

FIBRINOGEN

THROMBIN

TAT

PLASMIN

ANTITHROMBIN

PLASMINOGEN

PAP

<2 ANTIPLASMIN

D-DIMERS

FIBRIN MONOMER

FIBRIN POLYMER

FIBRIN CLOT
THROMBOGENIC ACTIVITY

Circulating Plasma Markers

- TAT (Thrombin-Antithrombin)
- F1.2 (Fibrinopeptide)
- D-dimers
- PAP

IU/ml
Correlation Between Plasma Level of D-dimers Fragments and Frequency of Pain Episodes in SCD

$r = 0.74$
$p < 0.01$
INUIT NATIVE AMERICANS

N 3 FATTY ACIDS
n-3 FATTY ACIDS

- Attenuate platelet reactivity
- Increase blood fluidity
 - Increase RBC deformability
 - Decrease blood viscosity
- Decrease VLDL
- Decrease release of proinflammatory mediators LTB 4 and IL 1β
- Cause vasodilation
- Decrease re-infarction rate in CAD
Frequency of Pain Crisis

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>n-3FA</th>
<th>placebo</th>
<th>(P^{**})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients:</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pain episodes / year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre treatment</td>
<td>7.8</td>
<td>7.6</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>on treatment</td>
<td>3.8</td>
<td>7.1</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

\(P^{*}\) < 0.01 > 0.05

* for comparison between pre treatment v treatment

** for comparison between n-3fas v placebo
<table>
<thead>
<tr>
<th></th>
<th>Study group N=127 Mean ± SEM</th>
<th>Control group N=126 Mean ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days in severe pain</td>
<td>1.28 ± 0.06*</td>
<td>1.72 ± 0.06</td>
</tr>
<tr>
<td>Duration of crisis</td>
<td>2.57 ± 0.12*</td>
<td>4.35 ± 0.11</td>
</tr>
<tr>
<td>Duration of Hospitalization</td>
<td>7.08 ± 0.36*</td>
<td>12.06 ± 0.76</td>
</tr>
</tbody>
</table>

*P< 0.05 Qari et al Blood 2005;106:2340a
Why is there simultaneous onset of pain in so many parts of the body?
VASO - OCCLUSION
Poiseuille’s Formula

\[F = \Delta P \times \frac{\Pi r^4}{8 \eta L} \]
Blood vessel NO concentration

Blood vessel

SICKLE PAIN EPISODES

- Increased hemolysis
- Release of arginase reduces NO production and free hemoglobin scavenging of nitric oxide
- Diffuse vasoconstriction with ischemia
- More sickling and hemolysis
- Positive feedback loop intensifying vasoconstriction and diffuse ischemia
- Diffuse Pain
Molecular Genetic Therapy

Zou et al Blood 211;118:4599-4608

Zou et al Cell Research 2012;22:491-494